Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
Forests ; 13(3):387, 2022.
Article in English | ProQuest Central | ID: covidwho-1760476

ABSTRACT

Background: Several studies have suggested the possibility of obtaining specific respiratory benefits by experiencing forests and other natural resources. Despite this, forests have never been considered according to such potential. This study aims to compare municipalities by considering the absence/presence of tree species generating ‘above threshold’ potential respiratory benefits. Methods: The autonomous Region of Friuli Venezia Giulia in Italy has been assumed as a research area. The natural resource based view (NRBV), postulating the strategic role played by natural resources in achieving both above-average (thus ‘valuable’) and ‘concentrated’ (thus ‘rare’ among competitors) performance, has been adopted. The literature reviews dealing with potential respiratory benefits of biogenic organic compounds (BVOCs) emitted by trees, published within the ‘forest therapy’ research field, have been adopted. Three analysis models rating tree species by their potential respiratory benefits in ‘holistic-general’ (P1), ‘particular’ (P2), and ‘dynamic” terms (P3) have been outlined. The resulting overall potentials of tree species have been assessed by adopting the well-rooted Hollerith distance (HD) model. Tree species have been rated “1” when they satisfy one or more of 58 potential respiratory benefits. Municipalities have been ranked by considering the surface area covered by forest types whose dominant tree species achieve above-average potential respiratory benefits. QGIS software has been adopted to geographically reference the results obtained. Results: (P1) Valuable municipalities include those covered by both coniferous and deciduous forests;(P2–3) Municipalities achieving the highest potential respiratory benefits, in both particular and dynamic terms, have been mapped. Discussion: Forest-based initiatives that are running in the preselected municipalities can be both further improved and diversified in a targeted way. Conclusions: Despite some limitations mostly embedded in the concept of ‘model’, this study allows scholars to reduce uncertainties when locating municipalities in which to conduct local-scale experiments.

2.
Int J Environ Res Public Health ; 19(1)2021 Dec 27.
Article in English | MEDLINE | ID: covidwho-1580806

ABSTRACT

The practice of spending time in green areas to gain the health benefits provided by trees is well known, especially in Asia, as 'forest bathing', and the consequent protective and experimentally detectable effects on the human body have been linked to the biogenic volatile organic compounds released by plants. Houseplants are common in houses over the globe and are particularly appreciated for aesthetic reasons as well for their ability to purify air from some environmental volatile pollutants indoors. However, to the best of our knowledge, no attempt has been made to describe the health benefits achievable from houseplants thanks to the biogenic volatile organic compounds released, especially during the day, from some of them. Therefore, we performed the present study, based on both a literature analysis and in silico studies, to investigate whether the volatile compounds and aerosol constituents emitted by some of the most common houseplants (such as peace lily plant, Spathiphyllum wallisii, and iron plant, Aspidistra eliator) could be exploited in 'indoor forest bathing' approaches, as proposed here for the first time not only in private houses but also public spaces, such as offices, hospitals, and schools. By using molecular docking (MD) and other in silico methodologies for estimating vapor pressures and chemico-physical/pharmacokinetic properties prediction, we found that ß-costol is an organic compound, emitted in appreciable amounts by the houseplant Spathiphyllum wallisii, endowed with potential antiviral properties as emerged by our MD calculations in a SARS-CoV-2 Mpro (main protease) inhibition study, together with sesquirosefuran. Our studies suggest that the anti-COVID-19 potential of these houseplant-emitted compounds is comparable or even higher than known Mpro inhibitors, such as eugenol, and sustain the utility of houseplants as indoor biogenic volatile organic compound emitters for immunity boosting and health protection.


Subject(s)
Air Pollutants , Air Pollution, Indoor , COVID-19 , Volatile Organic Compounds , Air Pollutants/analysis , Air Pollution, Indoor/analysis , Environmental Monitoring , Forests , Humans , Molecular Docking Simulation , SARS-CoV-2 , Volatile Organic Compounds/analysis
SELECTION OF CITATIONS
SEARCH DETAIL